Recent Advances in Relational Complexity Theory & its Application to Cognitive Development

> Glenda Andrews & Graeme S. Halford Griffith University Australia

Changing conceptions of thinking

- In Piagetian theory, cognitive development culminates in formal operational *logic*
 - "logic is the mirror of thought" (Piaget, 1950)
- assumption that human thought is *logical* has been questioned
 - Information processing theories
 - Heuristics (Kahneman & Tversky, 1982)
 - Rational analysis (Anderson, 1990, 1991)
 - Mental models approach (Johnson-Laird & Byrne, 1991)

 If human reasoning is not "logical" then "normative logic" criteria are inappropriate for evaluating reasoning in children and adults

• reasoning can be considered in terms of the complexity of the mental models employed

Complexity as a criterion? Some requirements

- we need a *principled* method for analysing tasks and quantifying their complexity that is
 - applicable in different content domains
 - capable of making predictions in advance of data
 - supported by behavioural evidence
 - items with higher estimated complexity should be more difficult than comparable items with lower estimated complexity
 - sensitive to age related change
 - tests at a given complexity level form an equivalence class
 - consistency within individuals
 - consistent with evidence about brain function & development

Outline

- Describe Relational Complexity theory
- Demonstrate the approach by analysing complexity of some cognitive development tasks
- Evaluate whether requirements are met

Relational Complexity theory

(Halford, 1993; Halford, Wilson & Phillips, 1998)

- Higher cognitive processes involve processing of relations
- Relational representations have properties that underpin symbolic thought and are integral to analogical reasoning
- Relational complexity (RC) corresponds to
 - number of variables that are related in a cognitive representation
 - number of slots or *arity* of relations

RC metric

RC is defined by the number of slots

- Unary relations have 1 slot
 - e.g. class membership, as in *dog*(Fido)
- Binary relations have 2 slots
 - e.g. larger-than(elephant, mouse)
- Ternary relations have 3 slots
 - e.g. *addition*(2,3,5)
- Quaternary relations have 4 slots
 - e.g. *proportion*(2,3,6,9)

- each slot in a relation can be filled in a variety of ways
- a binary relation has two slots
 - *larger-than*(____, ____)
 - *larger-than*(elephant, mouse)
 - *larger-than*(mountain, molehill)
 - *larger-than*(ocean-liner, rowing-boat)
- a slot corresponds to a variable or dimension

- More complex relations impose higher processing loads
 - ternary relations impose higher load than binary relations
 - quaternary relations impose higher load than ternary relations
- 2 strategies to reduce complexity and processing load
 - Segmentation
 - Conceptual chunking

- Segmentation
 - complex tasks are decomposed into less complex components that do not overload capacity
- English relative clause sentences
 - The clown that the teacher that the actor liked watched laughed (difficult to segment)
 - The actor liked the teacher that watched the clown that laughed (easy to segment)

- Conceptual chunking
 - compression of variables
 - analogous to collapsing factors in a multivariate design
 - Velocity = distance/time (ternary-relational) can be recoded to binding between a variable and a constant, Speed = 80 kph (unary-relational)
 - reduces complexity and processing load, but chunked relations are inaccessible
 - with the chunked (unary-relational) representation, we cannot determine that velocity doubles if we travel the same distance in half the time
 - this is possible with the un-chunked (ternary-relational) representation

Principle 1

- Complexity analyses must take account of strategies to reduce complexity & processing loads
- Variables can be chunked or segmented only if the relations between them do not need to be processed
- Tasks that impose high processing loads are those in which chunking and segmentation are constrained

Dimensional Change Card Sort (DCCS) task

DCCS

- young children
 - sort correctly by the first dimension (e.g., colour),
 - experience difficulty switching between dimensions (e.g., from colour to shape)
- 2 complexity explanations
 - Cognitive Complexity & Control theory (Zelazo & Frye, 1998; Zelazo et al., 2003)
 - number of levels in rule hierarchy
 - RC theory
 - Involves a ternary relation that is difficult to decompose

Setting condition $(S_1 \text{ or } S_2)$ indicates the sorting criterion

Antecedent condition (A_1 or A_2) assigns attributes (colors or shapes) to categories (C_1 or C_2)

Task structure can also be expressed as

$$S_1 A_1 \rightarrow C_1$$

$$S_1 A_2 \rightarrow C_2$$

$$S_2 A_1 \rightarrow C_2$$

$$S_2 A_2 \rightarrow C_1$$

- Interaction between setting condition and antecedent determines category
 - Setting condition must be considered with attributes (colour, shape) to determine category
 - DCCS is ternary-relational
 - DCCS is difficult to decompose into 2 subtasks

Halford, Bunch and McCredden (2007)

- Decomposable version of DCCS
 - the setting condition can be processed first
- This binary-relational version was mastered earlier than standard version

Principle 2

- Complexity analyses should be based on the cognitive processes actually used in the task
 - the case of transitive inference
 - Tom is taller than Paul
 - Paul is taller than Jack
 - Therefore Tom is taller than Jack
 - premises are represented as an ordered array
 - Tom Paul Jack
 - integration of premises into an ordered array is the most demanding part of the task. The complexity analysis focuses on this.

Principle 3

- Complexity analysis applies to information that is being processed in the current step of the task
 - not to information that is being stored for future processing
 - for tasks with multiple steps, task complexity corresponds to most complex step

Other methodological requirements

- tasks must be appropriate to age of participants
- use training to ensure familiarity with materials, procedures, task demands
- include less complex control tasks with comparable materials, procedures
 - for ternary-relational tasks, include binary-relational tasks with comparable procedures.

The complexity of relations that can be represented increases with age

- unary relations: 1 year
- binary relations: 2 years
- ternary relations: 5 years
- quaternary relations: 11 years
 - most adults can process 4 variables in parallel (quaternary relation)
 - some adults can process 5 variables (quinary relation) under optimal conditions (Halford et al., 2005)

- Method for Analysis of Relational Complexity demonstrated using three cognitive development tasks
 - Transitive inference
 - Class inclusion
 - Children's Gambling task
- present empirical findings

Transitive inference

Premisesa R b; b R cThereforea R cwhere R is a transitive relationPremisesTom is taller than PaulPaul is taller than JackThereforeTom is taller than Jack

5-element task precludes use of a labelling strategy Premises a R b; b R c; c R d; d R e Therefore b R d

Transitive Inference Task (Andrews & Halford, 1998; 2002)

Transitive inference

- Transitive reasoning requires that the relations "GREEN above RED" and "RED above BLUE" be integrated to form an ordered triple, "GREEN above RED above BLUE".
- GREEN above BLUE can be deduced from this.
- Premise integration is ternary-relational because premise elements must be assigned to three slots.

There is a <u>constraint on segmentation</u> because both premises must be considered in the same decision.

Children's transitive inference performance

Binary-relational items were easier than ternaryrelational items, especially for younger children.

Ternary-relational items were more sensitive to age.

Class Inclusion

- In the set {4 green circles, 3 yellow circles} green things and yellow things are included in circles.
- This is a ternary relation between three classes; green, yellow, circles.

There are also three binary relations:

- green to circles,
- yellow to circles,
- green is the complement of yellow

- No single binary relation is sufficient for understanding inclusion
- The inclusion hierarchy cannot be decomposed into a set of binary relations without losing the essence of the concept.

The processing load is due to the need to allocate classes to all 3 slots in the same decision.

- To determine that circles is the superordinate class we must consider relations between circles, green elements and yellow elements.
- Circles is not inherently a superordinate class
 - It is the superordinate because it includes at least two subclasses.
- Green is a subordinate class because it is included in circles, and because there is at least one other subordinate class.

Conceptual chunking

• circles, with subclasses: green, yellow/blue/orange

 yellow/blue/orange can be chunked into the single class: non-green circles

• Why not chunk green, yellow, blue and orange into a single subclass?

• We would lose the inclusion hierarchy

 At least 3 classes are needed to represent an inclusion hierarchy and it cannot be reduced to less than a ternary relation.

Class Inclusion task

- A. Are there more green things or more yellow things?
- B. Are there more yellow things or more circles?
- C. Are there more green things or more circles?

Children's Class Inclusion performance (*N* = 442)

- Binary-relational items easier than ternary-relational, especially for younger children
- Ternary-relational items were more sensitive to age

lowa Gambling Task (Bechara et al 1994)

- initial stake of play money
- goal: to win as much money as possible by choosing cards from 4 decks
 - 2 "disadvantageous" decks yield high gains, higher losses => net loss over trials
 - 2 "advantageous" decks yield low gains, minimal losses => net gain over trials

- Unimpaired adults quickly learn to identify the advantageous decks and select from them, while avoiding the disadvantageous decks.
 - improvement across trial blocks
- Patients with frontal brain lesions continue to select from the disadvantageous decks
 - no improvement across trial blocks

Children's Gambling Task

(Kerr & Zelazo, 2004)

- 2-deck version
- rewards were M&Ms
- Cards display happy & sad faces indicating the numbers of M&Ms won & lost
- 5 blocks of 10 trials
- 3-year-olds: choices from advantageous deck decreased across blocks
- 4-year-olds: choices from advantageous deck tended to increase across blocks

- Cognitive Complexity & Control (CCC) theory
 - 3 year-olds can use a pair of arbitrary rules
 - can learn the initial discrimination
 - striped deck has high gains, dotted deck has low gains
 - have difficulty coordinating this with emerging evidence about losses
 - striped deck has high losses, dotted deck has low losses
 - older children can integrate two incompatible pairs of rules into a single rule system via a higher-order rule (Zelazo, Jacques, Burack & Frye, 2002)
 - can formulate a higher-order rule and this allows them to appreciate net gains

Relational Complexity

(Bunch, Andrews & Halford, 2007)

- CGT requires integration of the differences between the decks in gains and losses
- 2 binary relations must be integrated into a ternary relation involving 3 variables
 - (deck, magnitude of gain, magnitude of loss)
- Prediction
 - by 5 years, children will process the ternary relations required for success on the CGT
 - 3-year-olds will be
 - able to process the component binary relations,
 - unable to integrate these binary relations into a ternary relation

Bunch, Andrews & Halford (2007)

- designed 2 less complex (binary-relational) versions
- binary-gain
 - decks differed in gains, with losses held constant across decks
 - (deck, magnitude of gain)
- binary-loss
 - decks differed in losses, with gains held constant across decks
 - (deck, magnitude of loss)
- 3-, 4-, and 5-year-olds completed all 3 versions
 - ternary CGT (as in Kerr & Zelazo, 2004)
 - binary-gain
 - binary-loss
- procedures were closely matched

- Binary-relational
 - choices from advantageous decks increased across blocks for all age groups
- Ternary-relational
 - Choices from advantageous decks increased across blocks for 5-year-olds, but not for 3or 4-year-olds
- Younger children dealt with each component of the task in isolation, but they did not integrate information about gains and losses to identify the advantageous deck

- Complexity effects, Age × Complexity interactions have been observed in many content domains
 - Transitive inference; Class Inclusion; Hierarchical classification; hypothesis testing, counting and cardinality; sentence comprehension (Andrews & Halford, 2002)
 - Property Inferences based on categorical hierarchies (Halford, Andrews & Jensen, 2002)
 - Balance-scale reasoning (Halford et al., 2002)
 - Theory of Mind tasks (Andrews et al., 2003)
 - Children's Gambling task (Bunch et al, 2007)

General finding

- children succeed on ternary-relational tasks from median age of 5 years
- younger children succeed on comparable binary-relational versions
- predictions were made in advance of data

Equivalence classes

- Andrews & Halford (2002)
 - transitive inference; class Inclusion;
 hierarchical classification; hypothesis testing,
 counting and cardinality
 - -4 binary, 5 ternary

Equivalence classes for tests of the same complexity

Person location

Andrews & Halford (2002)

Within-person consistency

- Andrews & Halford (2002)
 - Tasks were strongly inter-correlated and loaded on a single factor which accounted for
 - 43% of the variance (Exp 1)
 - 55% of the variance (Exp 2)
 - RC factor scores were correlated with
 - age (*r* = .80); fluid intelligence (*r* = .79) (Exp.1)
 - age (r = .85); compositionality of sets (r = .68) (Exp. 2)

- Bunch (2006)
 - 3-, 4-, 5-, 6-year-olds completed 7 tasks, with binary- and ternary-relational items within each
 - Transitive inference
 - Class Inclusion
 - DCCS
 - Children's Gambling Task
 - Theory of mind
 - Delay of Gratification (choice paradigm)
 - Conditional Discrimination & Reversal learning
 - Age \times Complexity interactions for all tasks
 - Significant cross-task correlations

Zero-order correlations: ternary-relational items

	DoG	CGT	CD	ТоМ	CI	TI	DCCS
DoG	1.00						
CGT	.68***	1.00					
CD	.60***	.54***	1.00				
ТоМ	.73***	.65***	.77***	1.00			
CI	.70***	.68***	.70***	.77***	1.00		
TI	.68***	.60***	.71***	.72***	.71***	1.00	
DCCS	.67***	.59***	.58***	.66***	.68***	.65***	1.00
Age	.77***	.69***	.76***	.85 ***	.80***	.82***	.71***

Cross-domain findings suggest we are tapping a common underlying relational processing ability that undergoes considerable development between 3 years and 8 years

Brain research

- Prefrontal cortex (PFC) appears suitable for representing relations (Robin & Holyoak, 1995)
 - especially lateral PFC regions (BA9; BA10; BA46)
- fMRI studies of analogy have indicated activation of the
 - left frontopolar cortex (Bunge et al. 2005),
 - left frontal pole, BA 9, BA10 (Green et al., 2006)
 - right BA11/47 and left BA45 (Luo et al., 2003)

Brain research

- Selective activation of the PFC with tasks of high relational complexity
 - Kroger et al. (2002) parametrically varied RC of modified Ravens matrix problems and found selective activation of the left anterior PFC.
 - Waltz, et al., (2004). PFC dysfunction was associated with impaired relational integration in Alzheimer's patients. "... intact PFC is necessary for the on-line integration of relational representations ..."
 - Christoff & Owen, (2006). Functions of the rostrolateral prefrontal cortex (BA10) are related more to cognitive complexity than to a cognitive domain

Transitive inference & PFC

- Waltz et al (1999)
 - Prefrontal patients were seriously impaired in ability to integrate relations, but were unimpaired in episodic memory and semantic knowledge
 - Temporal patients showed the opposite pattern
 - Double dissociation
- Goel (2007) reviewed 5 recent PET and *f*MRI studies of explicit transitive inference
 - activation patterns varied as a function of task variables
 - all studies reported increased activation relative to baseline in left DL-PFC
 - either BA9, BA46 or both regions

Transitive inference

- Fangmeier, Knauff, Ruff, & Sloutsky (2006)
 - event-related fMRI study
 - distinguished activation associated with premise encoding vs premise integration
 - premise integration => additional activation in BA10 and cingulate (BA32)
- Brain research on adults provides converging support for complexity as a criterion for evaluating reasoning

Brain development

- prefrontal regions are the last to reach maturation
 - synaptic density & elimination (Huttenlocher & Dabholkar, 1997)
 - myelination (Paterson, et. al., 2006)
- myelination continues in the dorsal, medial, and lateral regions of the frontal cortex during adolescence (Nelson, Thomas, & De Haan, 2006)
- in frontal lobes grey matter maturation occurs
 - earliest in orbitofrontal cortex (BA11)
 - later in ventrolateral (BA44, BA45, BA47)
 - and later still in dorsolateral PFC (BA9; BA46)
 coinciding with its later myelination (Gogtay et al., 2004)

 Processing of complex relations might depend on the functional maturity of these brain regions

Complexity as a criterion for reasoning

- RC theory provides a principled way to analyse tasks and quantify their complexity
 - RC metric; Chunking and segmentation strategies
 - Principles for complexity analysis
- Some degree of domain generality
 - RC approach has been applied to many content domains
- Predictions based on the RC theory have received empirical support
 - Complexity effects
 - Age of acquisition
 - Equivalence classes
 - Within-person consistency
- Consistent with research on functions of PFC in adults, and the protracted maturation of these regions

Resources construct

- Nature of the resource
 - active processing, rather than maintenance
 - dynamic binding to a coordinate system
 - early examples
 - object-location bindings
 - avoidance of A-Not-B error in infancy
 - assigning elements to slots in ordered array or other mental model
 - tests of relational processing capacity should incorporate a relational complexity manipulation